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Abstract
This work presents the derivation of the large time and distance asymptotic
behavior of the field–field correlation functions of impenetrable one-
dimensional anyons at finite temperature. In the appropriate limits of the
statistics parameter, we recover the well-known results for impenetrable
bosons and free fermions. In the low-temperature (usually expected to be
the ‘conformal’) limit, and for all values of the statistics parameter away from
the bosonic point, the leading term in the correlator does not agree with the
prediction of the conformal field theory, and is determined by the singularity
of the density of the single-particle states at the bottom of the single-particle
energy spectrum.

PACS numbers: 02.30.Ik, 05.30.Pr, 71.10.Pm

1. Introduction

This is the last paper in the series of papers [1–3] in which we study rigorously the large
time and distance asymptotic behavior of the temperature-dependent field–field correlation
functions of one-dimensional impenetrable anyons. In this work, we present the derivation of
the final results for the asymptotics of the time-dependent correlation functions. As in the case
of ‘static’ (same-time) correlators, for which the asymptotic behavior was computed in [3],
the starting point of our analysis is the determinant representation for the correlators found
in [1, 2]. With the help of this representation, we are able to derive a system of differential
equations for the correlators, which is the same as the one for impenetrable bosons [4, 5], but
with different initial conditions. The asymptotic behavior of the correlators is computed then
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by solving the matrix Riemann–Hilbert problem that is associated with the obtained system of
the differential equations. The most striking feature of the time-dependent asymptotics found
in this work is the fact that its leading term is non-conformal. It contradicts the predictions
of the conformal field theory (or, equivalently, bosonization) that were derived for the one-
dimensional anyons in [6, 7]. This is in contrast to the static correlators which agree with the
conformal field theory.

The model of impenetrable anyons considered in our series of papers is arguably the
simplest physical model of one-dimensional particles with fractional exchange statistics, and
is the anyonic generalization of the impenetrable Bose gas first studied by Girardeau [8].
Despite its simplicity, the model is closely related to the realistic models of transport of
anyonic quasiparticles of the fractional quantum Hall effect [9]. The model of impenetrable
anyons can also be viewed as the infinite-repulsion limit of a more general model of anyons with
δ-function interaction of finite strength, called the Lieb–Liniger gas of anyons, and is suggested
in [10]. Introduction of the fractional exchange statistics in one dimension requires additional
convention for the direction of the particle–particle exchanges [7, 9]. This implies that for
finite anyon–anyon interaction, the anyonic wavefunction is discontinuous at the coincident
particle coordinates, the fact that makes the physical interpretation of the finite-interaction case
difficult. Nevertheless, the Lieb–Liniger gas of anyons can be well defined mathematically and
has received considerable attention in the last few years. As a result of these efforts, we know
the Bethe ansatz solution [10] of this model, the low-energy properties and the connection
with Haldane’s [11] fractional exclusion statistics [12, 13], the thermodynamics [14], the
ground-state properties [15] and the low-lying excitations [7]. Various techniques were used
to study the correlation functions (mostly for the physically motivated impenetrable case)
such as the Fisher–Hartwig conjecture [16, 17], bosonization [6], conformal field theory [7],
numerical calculations [19, 20] and the replica method [18]. The present paper, together with
our previous papers [1–3], is devoted to the exact calculation of the asymptotic behavior of the
correlation functions using the techniques developed for impenetrable bosons [4, 5, 30–33]. It
should be mentioned that other models of the one-dimensional fractional exchange statistics
[21–27] can also be found in the literature. In particular, the quantum inverse scattering
method with anyonic grading was developed recently in [28].

The main result obtained in this work is the large time and distance asymptotics of the
field–field correlator 〈�(x2, t2)�

†(x1, t1)〉T of impenetrable anyons at finite temperatures.
This result can be expressed conveniently in the rescaled variables (see equation (9)) in which

〈�(x2, t2)�
†(x1, t1)〉 =

√
T g(x, t, β, κ), (1)

and the function g(x, t, β, κ) is defined below. To do this, we need to introduce several
quantities:

C(x, t, β, κ) = 1

π

∫ +∞

−∞
|x − 2tλ|ln|ϕ(λ2, β, κ)| dλ,

I (β, κ) = �
(∫ +∞

−∞
ln ϕ(λ2, β, κ) dλ

) (2)

and

ϕ(λ2, β, κ) = eλ2−β − eiπκ

eλ2−β + 1
, (3)

where the branch of the logarithm is chosen so that limλ→∞ ln ϕ(λ2, β, κ) = 0. With these
definitions, our result for the function g(x, t, β, κ) can be stated as follows. In the large time
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and distance limit: x, t → ∞, with x/t = const, the asymptotic behavior of the field–field
correlation function (1) is given by

g(x, t, β, κ) = tν
2/2 eC(x,t,β,κ)+ixI (β,κ)[c0t

−1/2−iν e2it (λ2
s +β) + c1 e2(±tπκ−ixλ∓

0 ) + o(1/
√

t)], (4)

where λs = −x/2t and ν = − 1
π

ln
∣∣ϕ(

λ2
s , β, κ

)∣∣. Other notations are

λ∓
0 = −(

β +
√

β2 + π2κ2
)1/2/√

2 ∓ i
(−β +

√
β2 + π2κ2

)1/2/√
2, (5)

with κ ∈ [0, 1] being the statistics parameter: κ = 0 for bosons and κ = 1 for fermions,
c0 and c1 are some undetermined amplitudes, and the upper and lower signs correspond,
respectively, to the space-like and the time-like regions defined by x/2t >

√
β and x/2t <

√
β.

Equation (4) also assumes the condition |
√
β + iπκ−x/2t | > �√

β + iπκ , where one should
take the positive branch of the square root, the meaning of which is clarified in the main text. It
might be argued that for any finite κ , the second term in the parenthesis of the asymptotics (4)
is exponentially small compared to the error term and therefore should not appear there. The
presence of this term is justified, however, by the fact that it becomes dominant in the bosonic
limit κ → 0, when �λ∓

0 → 0. It is interesting to note that for all κ �= 0, the first, leading term
of the asymptotics (4) is not the one predicted by the conformal field theory or bosonization
[6, 7], and only the second, sub-leading term gives the conformal part of the asymptotics, as
demonstrated explicitly in section 7.

The plan of the paper is as follows. Section 2 describes the determinant representation
for the correlation functions obtained in [1], which is used in section 3 to obtain differential
equations indirectly describing these functions. The relevant matrix Riemann–Hilbert problem
is introduced in section 4, and its asymptotic solutions in the space-like and the time-like
regions are presented in sections 5 and 6. The complete results for the correlators are
summarized in section 7, and their analysis in the bosonic, fermionic and the low-temperature
(‘conformal’) limit is given in sections 8 and 9. In the two appendices, we (A) discuss
the large time and distance asymptotic behavior of the correlators of free fermions, and (B)
present detailed analysis of the function C(x, t, β, κ).

2. Determinant representation for the field–field correlator

The second-quantized form of the Hamiltonian of the Lieb–Liniger gas of anyons is

H =
∫

dx([∂x�
†(x)][∂x�(x)] + c�†(x)�†(x)�(x)�(x) − h�†(x)�(x)), (6)

where h is the chemical potential and c is the coupling constant, assumed in our case to be
infinite to make the anyons impenetrable. The anyonic fields satisfy the commutation relations
of the usual form

�(x1)�
†(x2) = e−iπκε(x1−x2)�†(x2)�(x1) + δ(x1 − x2),

�†(x1)�
†(x2) = eiπκε(x1−x2)�†(x2)�

†(x1),

with ε(x) = x/|x|, ε(0) = 0. The commutation relations become bosonic for κ = 0, and
fermionic for κ = 1. We are interested in the asymptotic behavior of the space, time and
temperature-dependent field–field correlator defined as

〈�(x2, t2)�
†(x1, t1)〉T = Tr(e−H/T �(x2, t2)�

†(x1, t1))

Tr e−H/T
.

In [2], we have obtained the following representation for the correlator:

〈�(x2, t2)�
†(x1, t1)〉T = eiht21

(
1

2π
G′(t12, x12) +

∂

∂α

)
det

(
1 + V̂ α

T

)∣∣∣∣
α=0

, (7)
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where xab = xa − xb, tab = ta − tb, a, b = 1, 2, and det(1 + V̂T ) is the Fredholm determinant
of the integral operator with the kernel

V α
T (λ, μ) = cos2(πκ/2) exp

{
− i

2
t12(λ

2 + μ2) +
i

2
x12(λ + μ)

}√
ϑ(λ)ϑ(μ)

×
[
E(λ|t12, x12) − E(μ|t12, x12)

π2(λ − μ)
− α

2π3
E(λ|t12, x12)E(μ|t12, x12)

]
, (8)

which acts on an arbitrary function f (λ) as(
V α

T f
)
(λ) =

∫ ∞

−∞
V α

T (λ, μ)f (μ) dμ.

The functions G′(t12, x12) and E(λ|t12, x12) in equations (7) and (8) are defined by

G′(t12, x12) =
∫ ∞

−∞
eit12μ

2−ix12μ dμ

and

E(λ|t12, x12) = P.V.
∫ ∞

−∞
dμ

eit12μ
2−ix12μ

μ − λ
+ π tan(πκ/2) eit12λ

2−ix12λ,

where P.V. denotes the Cauchy principal value, and ϑ(λ) ≡ ϑ(λ, T , h) in equation (8) is the
Fermi distribution function of the quasiparticle momentum λ at temperature T and chemical
potential h:

ϑ(λ, T , h) = 1

1 + e(λ2−h)/T
.

The correlator (7) depends on five variables: time, distance, temperature, chemical
potential and the statistics parameter. It is convenient to rescale three of them and the
momentum λ by temperature:

x = (x1 − x2)
√

T /2, t = (t2 − t1)T /2, β = h/T , λ → λ/
√

T . (9)

Then the explicit dependence of the correlator on temperature is simple and is given by
equation (1). To see this, one needs first to obtain a more manageable expression for the field
correlator (7). In the rescaled variables (9), the functions G′ and E are given by

G′(t, x) =
√

T G(t, x), G(t, x) =
∫ ∞

−∞
e−2itλ2−2ixλ dλ, (10)

and

E(λ|t, x) = P.V.
∫ ∞

−∞
dμ

e−2itμ2−2ixμ

μ − λ
+ π tan(πκ/2) e−2itλ2−2ixλ. (11)

We introduce the two functions e±(λ):

e−(λ) = cos(πκ/2)

π

√
ϑ(λ) eitλ2+iλx (12)

and

e+(λ) = e−(λ)E(λ) = cos(πκ/2)

π

√
ϑ(λ) eitλ2+iλx

×
(

P.V.
∫ ∞

−∞
dμ

e−2itμ2−2ixμ

μ − λ
+ π tan(πκ/2) e−2itλ2−2ixλ

)
. (13)

In terms of these functions, the kernel (8) of the integral operator appearing in (7) is expressed
as

V α
T (λ, μ) = VT (λ, μ) − α

2π
AT (λ, μ),

4
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with

VT (λ, μ) = e+(λ)e−(μ) − e−(λ)e+(μ)

λ − μ
(14)

and

AT (λ, μ) = e+(λ)e+(μ).

In what follows, we also need some basic formulas from the theory of Fredholm determinants:

log det(1 + V̂ ) =
∞∑

n=1

(−1)n+1

n
Tr V n, (1 + V̂ )−1 = 1 − V 1 + V 2 + · · · ,

where V n(λ, μ) is determined successively by V n(λ, μ) = ∫
V (λ, ν)V n−1(ν, μ) dν and

V 1(λ, μ) = V (λ,μ). The trace is defined naturally as Tr V = ∫
V (λ, λ) dλ. Then,

Tr V 2 = ∫∫
V (λ,μ)V (μ, λ) dλ dμ, and so on. Using these relations, one can see directly that

∂ det
(
1 + V α

T

)
∂α

∣∣∣∣
α=0

= −
√

T

2π
Tr[(1 + V̂T )−1ÂT ] det(1 + V̂T ),

which together with equation (10) gives equation (1) for the correlator with

g(x, t, β, κ) = − 1

2π
e2itβ (Tr[(1 + V̂T )−1ÂT ] − G(t, x)) det(1 + V̂T ). (15)

The integral operator V̂T whose determinant appears in (15) is of a special type
called ‘integrable’ operators [4, 5, 34]. This type of integral operators have kernels of
the ‘factorizable’ structure similar to equation (14) and are ubiquitous in investigations of
correlation functions of integrable quantum systems and distribution of eigenvalues of random
matrices. If an operator is integrable, the resolvent operator defined as

R̂T = (1 + V̂T )−1V̂T , (1 + V̂T )(1 − R̂T ) = 1,

is also of the same type, which means that the resolvent kernel that solves the integral equation

RT (λ, μ) +
∫ +∞

−∞
VT (λ, ν)RT (ν, μ) dν = VT (λ, μ)

is also factorized as in (14):

RT = f+(λ)f−(μ) − f−(λ)f+(μ)

λ − μ
.

The functions f±(λ) are the solutions of the integral equations

f±(λ) +
∫ +∞

−∞
VT (λ, μ)f±(μ) dμ = e±(λ). (16)

Now we can introduce an important class of objects called auxiliary potentials defined as

Blm(x, t, β, κ) =
∫ +∞

−∞
el(λ)fm(λ) dλ, l,m = ±, (17)

and

Clm(x, t, β, κ) =
∫ +∞

−∞
λel(λ)fm(λ) dλ, l,m = ±. (18)

Due to the symmetry of VT (λ, μ), we have B+− = B−+. One can see directly that
Tr[(1 + V̂T )−1ÂT ] = B++. Therefore, defining b++ = B++ − G, we obtain the following
representation for the function (15) in the time- and temperature-dependent correlator (1):

g(x, t, β, κ) = − 1

2π
e2itβb++(x, t, β, κ) det(1 + V̂T ). (19)

Since g(x, t, β, κ) = g(−x, t, β,−κ) and g(x, t, β, κ) = g∗(x,−t, β,−κ), to study the
correlator, it is sufficient to investigate only the case x > 0, t > 0.

5
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3. Differential equations for the correlation functions

Obtaining the differential equations directly for the correlation functions at finite temperature is
an extremely difficult task. One can, however, obtain a system of partial differential equations
for the auxiliary potentials and show that the derivatives of the logarithm of the Fredholm
determinant

σ(x, t, β, κ) = log det(1 + V̂T ) (20)

is expressed in terms of a combination of the auxiliary potentials and derivatives. The
differential equation for the potentials are obtained as follows. First, we define a two-
component function

F(λ) =
(

f+(λ)

f−(λ)

)
and look for three matrix operators L(λ), M(λ), N(λ) which depend on the auxiliary potentials
and their derivatives and satisfy the Lax representation conditions

L(λ)F (λ) = 0, M(λ)F (λ) = 0, N(λ)F (λ) = 0.

The differential equations for the potentials are obtained then from the compatibility conditions
for the Lax representation

[L(λ), M(λ)] = [L(λ), N(λ)] = [M(λ), N(λ)] = 0

which should be valid for any value of the spectral parameter λ.
Specific calculations follow closely those for the impenetrable bosons [4, 5] and their

main ingredient are the following relations:

∂xE(λ) = −2iG − 2iλE(λ),

∂tE(λ) = −2iλ2E − 2iλG + ∂xG, (21)

∂βE(λ) = 0,

∂λE(λ) = −(4itλ + 2ix)E − 4itG, (22)

which can be proved directly from definitions (10) and (11) of the functions G and E. Here we
only present the results of the calculations.

Lemma 3.1. The potentials C(x, t, β, κ) can be expressed in terms of the potentials
B(x, t, β, κ) and G(x,t) as follows:

C++ = i

2
∂xB++ − 2GB+− + B+−B++,

C−− = − i

2
∂xB−− − B+−B−−,

and

C+− = C−+ = B2
+− − B++B−−.

Theorem 3.1. Define

g− ≡ e−2itβB−−, g+ ≡ e2itβb++,

and

n ≡ g−g+ = b++B−−, p ≡ g−∂xg+ − g+∂xg−.

6
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Then g− and g+ satisfy the separated nonlinear Schrödinger equation

−i∂tg+ = 2βg+ + 1
2∂2

xg+ + 4g2
+g−,

i∂tg− = 2βg− + 1
2∂2

xg− + 4g2
−g+,

(23)

and

−2i∂tn = ∂xp.

The equations containing the β-derivatives are

∂β∂xg+

g+
= ∂β∂xg−

g−
= ϕ

and

−i∂tϕ + 4∂βp = 0, ∂xϕ + 8∂βn + 2 = 0.

The previous theorem characterizes completely the potentials B−− and b++(B++). The
other potentials can be expressed in terms of these two as

∂xB+− = 2ib++B−−, ∂tB+− = −p,

∂βB+− = −ix/4 − iϕ/4,
(24)

and

∂x(C+− − C−+) = (B++ − 2G)∂xB−− − B−−∂xB++. (25)

Finally, we have the following theorem.

Theorem 3.2. The derivatives of the logarithm of the Fredholm determinant σ(x, t, β, κ)

are given by

∂xσ = −2iB+−,

∂tσ = −2iGB−− − 2i(C+− + C−+),

∂βσ = −2it∂β(C+− + C−+) − 2ix∂βB+− − 2itB−−∂βB++ + 2it (B++ − 2G)∂βB−−
+ 2(∂βB++)(∂βB−−) − 2(∂βB+−)2.

(26)

All the differential equations above do not depend on the statistics parameter and are the
same as those obtained for impenetrable bosons in [4, 5]. The statistics parameter appears only
in the initial conditions which can be extracted from the equal-time field correlator studied in
[2, 29]. The same phenomenon was noticed also for static correlators at T = 0 [17] and finite
temperature [2, 29].

4. Matrix Riemann–Hilbert problem

The discussion in the previous sections implies that with the use of the differential equations,
the large-time and -distance asymptotic behavior of the field correlator can be extracted from
the corresponding behavior of the auxiliary potentials. A powerful method of obtaining
the asymptotics for the potentials is the formalism of the matrix Riemann–Hilbert problem
(RHP). Here, we consider a specific matrix RHP associated with the integrable system that
characterizes the potentials. Solution of this RHP will allow us to obtain the asymptotics of the
potentials and field correlator. In details, we are interested in finding a 2 × 2 matrix function

7
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χ(λ), nonsingular for all λ ∈ C, and analytic separately in the upper and lower half planes,
which also satisfies the following conditions:

χ−(λ) = χ+(λ)G(λ), χ±(λ) = lim
ε→0+

χ(λ ± iε), λ ∈ R,

χ(∞) = I.
(27)

Here I is the unit 2 × 2 matrix and G(λ) is the conjugation matrix defined only for real λ and
given in our case by

G(λ) =
(

1 − 2π ie+(λ)e−(λ) 2π ie2
+(λ)

−2π ie2
−(λ) 1 + 2π ie+(λ)e−(λ)

)
. (28)

The functions e±(λ) appearing in this equation are defined in (13) and (12). The matrix function
χ(λ) depends also on x, t, β and κ , but this dependence is suppressed in our notations. Also,
in what follows, we will consider κ ∈ (0, 1]. The case of impenetrable bosons, κ = 0, requires
a special treatment presented in [5, 33].

4.1. Connection with the auxiliary potentials

In this section, we show that in the limit of large λ, the auxiliary potentials can be extracted
from the solution of the RHP (27). To do this, one can see first (as shown, e.g., in chapter XV
of [5]) that the RHP is equivalent to the following system of singular integral equations:

χ+(λ) = I +
1

2π i

∫ +∞

−∞

χ+(μ)[I − G(μ)]

μ − λ − i0
dμ, λ ∈ R.

Multiplying from the right with

H(λ) =
(

1 e+(λ)

0 e−(λ)

)
,

and introducing χ̂(λ) = χ+(λ)H(λ), we transform these equations into

χ̂ (λ) = H(λ) +
1

2π i

∫ +∞

−∞

χ+(μ)H(μ)H−1(μ)[I − G(μ)]H(λ)

μ − λ − i0
dμ,

= H(λ) +
1

2π i

∫ +∞

−∞

χ̂(μ)Ĝ(λ, μ)

μ − λ − i0
dμ,

where

Ĝ(λ) =
(

0 0
2π ie−(μ) 2π i(e+(λ)e−(μ) − e−(λ)e+(μ))

)
and

χ̂ (λ) = χ+(λ)H(λ) =
(

χ11,+(λ) χ11,+(λ)e+(λ) + χ12,+(λ)e−(λ)

χ21,+(λ) χ21,+(λ)e+(λ) + χ22,+(λ)e−(λ)

)
. (29)

The integral equations for χ̂12 and χ̂22 are

χ̂12 = e+(λ) +
∫ +∞

−∞

χ̂12(μ)(e+(λ)e−(μ) − e−(λ)e+(μ))

μ − λ
dμ, λ ∈ R, (30)

and

χ̂22 = e−(λ) +
∫ +∞

−∞

χ̂22(μ)(e+(λ)e−(μ) − e−(λ)e+(μ))

μ − λ
dμ, λ ∈ R. (31)

Taking into account that the functions f±(λ) satisfy the integral equations (16), where the
kernel VT (λ, μ) is given by equation (14), one can see directly from (30) and (31) that

χ̂12(λ) = f+(λ), χ̂22(λ) = f−(λ). (32)

8
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Also equation (29) gives that χ̂11(λ) = χ11,+(λ), χ̂21(λ) = χ21,+(λ). Therefore, using
equation (32), we obtain the following integral equations for χ11,+(λ) and χ21,+(λ):

χ11,+(λ) = 1 +
∫ +∞

−∞

e−(μ)f+(μ)

μ − λ − i0
dμ, χ21,+(λ) =

∫ +∞

−∞

e−(μ)f−(μ)

μ − λ − i0
dμ, λ ∈ R.

Continuing analytically into the upper half plane, taking the limit of large λ, and using the
definitions of the auxiliary potentials (17) and (18), we obtain from these equations

χ11(λ) = 1 − 1

λ
B−+ − 1

λ2
C−+ + O

(
1

λ3

)
, (33)

χ21(λ) = −1

λ
B−− − 1

λ2
C−− + O

(
1

λ3

)
. (34)

In order to obtain similar expansions for χ12(λ) and χ22(λ), we proceed in the following
fashion. First, equation (29) gives

χ̂22(λ) = f−(λ) = χ21,+(λ)e+(λ) + χ22,+(λ)e−(λ).

Then, using equation (34) and the large-λ expansion of the integral equation (16) defining
f−(λ) we rewrite this equation as

e−(λ) − 1

λ
(e+(λ)B−− − e−(λ)B−+) − 1

λ2
(e+(λ)C−− − e−(λ)C+−) + · · ·

= e+(λ)

(
−1

λ
B−− − 1

λ2
C−−

)
+ e−(λ)

(
1 +

1

λ
χ

(1)
22 +

1

λ2
χ

(2)
22

)
+ · · · . (35)

Comparison of the two sides of this equation implies that

χ22(λ) = 1 +
1

λ
B+− − 1

λ2
C+− + O

(
1

λ3

)
. (36)

The expansion for χ12(λ) can be derived through similar steps:

χ12(λ) = 1

λ
B++ +

1

λ2
C−+ + O

(
1

λ3

)
. (37)

Collecting the results (33), (34), (36) and (37), we see that in the large-λ limit, the auxiliary
potentials follow from the expansion of the solution of the RHP (27):

χ(λ) = I +
1

λ

(−B−+ B++

−B−− B+−

)
+

1

λ2

(−C−+ C++

−C−− C+−

)
+ O

(
1

λ3

)
, λ → ∞.

4.2. Transformations of the RHP

It will be useful to perform several transformations on the RHP (27). The first one is

χ(λ) = χ̃ (λ)χ0(λ),

with

χ0(λ) =
(

1 −a(λ)

0 1

)
, a(λ) =

∫ +∞

−∞

e−2itμ2−2ixμ

μ − λ
dμ.

Using the fact that the boundary values of the function a(λ) on the real axis are

a±(λ) = ±iπ e−2itλ2−2ixλ + P.V.
∫ +∞

−∞

e−2itμ2−2ixμ

μ − λ
dμ,

9
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it can be shown that the matrix χ̃ (λ) solves the transformed RHP

χ̃−(λ) = χ̃+(λ)G̃(λ), λ ∈ R, χ̃(∞) = I, (38)

with G̃(λ) = χ0+(λ)G(λ)χ−1
0− (λ) given explicitly by

G̃(λ) =
(

1 − ϑ(λ)(1 + eiπκ) 2π i(ϑ(λ) − 1) e−2itλ2−2iλx

− 2i
π

cos2(πκ/2)ϑ(λ) e2itλ2+2iλx 1 − ϑ(λ)(1 + e−iπκ)

)
.

The specific form of the second transformation depends on whether we are considering
the ‘space-like’ (x/2t >

√
β) or the ‘time-like’ (x/2t <

√
β) region.

4.2.1. Transformation in the space-like case. As a first step, we need to introduce the
functions

ϕ(λ2, β, κ) = eλ2−β − eiπκ

eλ2−β + 1
(39)

and

α(λ) = exp

{
− 1

2π i

∫ +∞

−∞

dμ

μ − λ
ln ϕ(μ2, β, κ)

}
. (40)

The latter is the solution of the following scalar Riemann–Hilbert problem (for more
information on scalar RHP see, e.g., [37]):

α−(λ) = α+(λ)[1 − ϑ(λ)(1 + eiπκ)], λ ∈ R, α(∞) = 1.

Then, the second transformation in the space-like case is

�(λ) = χ̃(λ) e−σ3 ln α(λ),

where σ3 is the third Pauli matrix. The new matrix function �(λ) solves the matrix RHP

�−(λ) = �+(λ)G�(λ), λ ∈ R, χ̃(∞) = I, (41)

with the conjugation matrix G�(λ) = eσ3 ln α(λ)G̃(λ) e−σ3 ln α(λ):

G�(λ) =
(

1 p(λ) e−2itλ2−2ixλ

q(λ) e2itλ2+2ixλ 1 + p(λ)q(λ)

)
, (42)

where

p(λ) = −2π i[α−(λ)]2 eλ2−β

eλ2−β − eiπκ
(43)

and

q(λ) = −2i

π
cos2(πκ/2)[α+(λ)]−2 1

eλ2−β − eiπκ
. (44)

4.2.2. Transformation in the time-like case. The transformation in the time-like case is
similar to the one performed in the space-like case. The difference is that the function α(λ) is
now defined as (note the change of the sign of κ)

α(λ) = exp

{
− 1

2π i

∫ +∞

−∞

dμ

μ − λ
ln ϕ(μ2, β,−κ)

}
and is the solution of the scalar Riemann–Hilbert problem

α−(λ) = α+(λ)[1 − ϑ(λ)(1 + e−iπκ)], λ ∈ R, α(∞) = 1.

10



J. Phys. A: Math. Theor. 43 (2010) 115204 O I Pâţu et al

The new matrix �(λ) = χ̃(λ) e+σ3 ln α(λ) solves the same RHP (41) but now with the conjugation
matrix G�(λ) = e−σ3 ln α(λ)G̃(λ) e+σ3 ln α(λ):

G�(λ) =
(

1 + p(λ)q(λ) p(λ) e−2itλ2−2ixλ

q(λ) e2itλ2+2ixλ 1

)
, (45)

where p(λ) and q(λ) are

p(λ) = −2π i[α−(λ)]2 eλ2−β

eλ2−β − e−iπκ
(46)

and

q(λ) = −2i

π
cos2(πκ/2)[α+(λ)]−2 1

eλ2−β − e−iπκ
. (47)

4.3. Potentials in terms of the � matrix

In section 4.1, we showed that the auxiliary potentials can be extracted from the large-λ
expansion of the solution χ(λ) of the RHP (27). However, since we explicitly will be finding
the asymptotic solution of the RHP (41), we need to express the potentials in terms of the
� matrix. The computations necessary to do this are presented below only in the space-like
case, the time-like case being similar. The first step is to obtain the large-λ expansion of all
the terms in the relation

�(λ) = χ(λ)χ−1
0 (λ) e−σ3 ln α(λ).

Explicitly, we have in the limit λ → ∞:

χ(λ) = I +
1

λ

(−B−+ B++

−B−− B+−

)
+

1

λ2

(−C−+ C++

−C−− C+−

)
+ O

(
1

λ3

)
,

χ−1
0 (λ) = I +

1

λ

(
0 −G

0 0

)
+

1

λ

(
0 −G(1)

0 0

)
+ O

(
1

λ3

)
,

e−σ3 ln α(λ) = I +
1

λ

(−α0 0
0 α0

)
+ O

(
1

λ3

)
,

where G is given by (10) and

α0 = 1

2π i

∫ +∞

−∞
ln ϕ(μ2, β, κ) dμ. (48)

Considering a similar expansion for �(λ):

�(λ) = I +
1

λ

(
(�1)11 (�1)12

(�1)21 (�1)22

)
+

1

λ2

(
(�2)11 (�2)12

(�2)21 (�2)22

)
+ O

(
1

λ3

)
, λ → ∞,

and equating the terms with equal powers of λ, one finds

B+− = −(�1)11 − α0, b++ = (�1)12, B−− = −(�1)21,

C+− + C−+ + B−−G = (�2)22 − (�2)11.
(49)

In the time-like case, similar computations give

B+− = −(�1)11 + α0, b++ = (�1)12, B−− = −(�1)21,

C+− + C−+ + B−−G = (�2)22 − (�2)11,
(50)

with

α0 = 1

2π i

∫ +∞

−∞
ln ϕ(μ2, β,−κ) dμ. (51)

11
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5. Asymptotic solution of the RHP: space-like case

We are interested in solving the RHP (41) in the limit of large x > 0 and t > 0, but with finite
ratio x/t = const. If one compares the solution with the corresponding solution for the static
case (without time t), the analysis in the time-dependent case is more complicated due to the
presence of the stationary point of the phase

φ(x, t, λ) ≡ tλ2 + xλ,

where ∂λφ = 0. This condition gives

λs = − x

2t
, x > 0, t > 0, λs < 0.

The asymptotic analysis of the RHP has to properly take into account this stationary point.
In this work, we do this by employing the method pioneered in [35, 36], also used for the
impenetrable bosons [5, 33]. The main ingredient of this approach is the Manakov ansatz
[35] which provides an approximate solution �m(λ) to the RHP (41). The Manakov ansatz in
the space-like region is different from the one in the time-like region, even though the results
obtained from both forms of ansatz will be the same in the leading order. The asymptotic
analysis is based on the two assumptions: (i) the RHP is solvable and (ii) the boundary values
of �±(λ) on the real axis are uniformly bounded in the limit t → ∞. These assumptions can
be proved following sections 6 and 7 of [33]. Also, we require that

||

√

β + iπκ| − x/2t | > |�
√

β + iπκ|. (52)

The meaning of this inequality is discussed below (see section 5.3). While this condition is
not essential in that one can analyze other regimes as well, it is always satisfied, in particular,
in the more interesting low-temperature case β � 1.

5.1. Manakov ansatz

The space-like region is defined by

λs < −
√

β, β = h/T > 0,

a condition that can be expressed in more explicit notations as

(x1 − x2) > vF (t2 − t1) > 0,

where vF is the velocity of excitations, which in our model of impenetrable anyons coincides
with the Fermi velocity of free fermions, vF = 2kF , with kF = √

h, in the conventions used
in the Hamiltonian (6). The Manakov ansatz in the space-like region is given by

�m(λ) =
(

1 −Ip(λ)

−I q(λ) 1

)
eσ3 ln δ(λ),

where

Ip(λ) = 1

2π i

∫ +∞

−∞

δ+(μ)δ−(μ)

μ − λ
p(μ) e−2iφ(x,t,μ) dμ, (53)

I q(λ) = 1

2π i

∫ +∞

−∞

δ−1
+ (μ)δ−1

− (μ)

μ − λ
q(μ) e2iφ(x,t,μ) dμ, (54)

and the functions p(λ) and q(λ) defined by equations (43) and (44). The function δ(λ) is the
solution of the following scalar RHP:

δ+(λ) = δ−(λ)[1 + p(λ)q(λ)η(λs − λ)], λ ∈ R, δ(∞) = 1,

12
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with η(λ) denoting the step function

η(λ) =
{

1, λ > 0,

0, λ < 0.

This scalar RHP problem can be solved explicitly (see, e.g., [37]), and if we take into account
that

1 + p(λ)q(λ) = |ϕ(λ2, β, κ)|2,
the solution is

δ(λ) = exp

{
1

2π i

∫ λs

−∞

dμ

μ − λ
ln|ϕ(μ2, β, κ)|2

}
.

5.1.1. Properties of δ(λ). Before we show that �m(λ) is an approximate solution of the RHP
(41), it is useful to investigate some of the properties of the function δ(λ). For λ ∈ (λs,∞),
integration by parts gives

1

2π i

∫ λs

−∞

dμ

μ − λ
ln|ϕ(μ2, β, κ)|2 = 1

π i
ln(λ − λs) ln

∣∣ϕ(
λ2

s , β, κ
)∣∣

− 1

π i

∫ λs

−∞
ln|μ − λ|d(ln|ϕ(μ2, β, κ)|) dμ.

Introducing two quantities

ν(λs, β, κ) = 1

π
ln

∣∣ϕ(
λ2

s , β, κ
)∣∣−1

> 0, (55)

and

γ (λ) = 1

π

∫ λs

−∞
ln|μ − λ|d(ln|ϕ(μ2, β, κ)|) dμ,

one can use this relation to write δ±(λ) for λ ∈ (λs,∞) as

δ±(λ) = (λ − λs)
iν
± exp(iγ (λ)),

where (λ−λs)
iν
± are the boundary values of the multi-valued function (λ−λs)

iν defined in the
complex plane with the branch cut along the ray (−∞, λs]. When λ ∈ (−∞, λs), integration
by parts for singular integrals (see, e.g., [37], p 18) gives

δ±(λ) = exp

{
± ln|ϕ(λ2, β, κ)| +

1

π i
ln(λs − λ)± ln

∣∣ϕ(
λ2

s , β, κ
)∣∣

− 1

π i

∫ λs

−∞
ln|μ − λ|d(ln|ϕ(μ2, β, κ)|) dμ

}
.

This equation can be rewritten as

δ±(λ) = (λ − λs)
iν
± exp(iγ (λ))|ϕ(λ2, β, κ)|±1

∣∣ϕ(
λ2

s , β, κ
)∣∣∓1

in the notations used above. Therefore, the function δ(λ) in both regions is

δ±(λ) = (λ − λs)
iν
± exp(iγ (λ))

(
|ϕ(λ2, β, κ)|∣∣ϕ(

λ2
s , β, κ

)∣∣−1
)±η(λs−λ)

and

δ+(λ)δ−(λ) = (λ − λs)
iν
+ (λ − λs)

iν
−(exp 2iγ (λ)),

showing integrability of the singularity at λs .

13
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Figure 1. Stationary-phase contours for evaluation of the integrals (53) and (54) in the large-t limit

in the space-like case. The dots are the zeros of the function eλ2−β − eiπκ with λ−
0 denoting the

zero which gives the exponentially decreasing correction with the slowest rate of decay.

5.1.2. Estimation of Ip(λ) and I q(λ). In order to estimate Ip(λ) and I q(λ) in the large-t
limit, we use the steepest-descent method to evaluate the integrals (53) and (54). The paths of
the steepest descent going through the stationary point λs are shown in figure 1. An important
consideration is that besides the contribution to the integrals of this stationary point, which is
of the order

O

(
1√

t(λ − λs)

)
, (56)

one also has to take into account the contribution of the residues located at λ ± i0 and at the
zeros of the function eλ2−β − eiπκ . We begin by first neglecting the contributions from the
residues at the zeros of eλ2−β − eiπκ which at large t give exponentially small corrections and
focus on the residue at λ ± i0. (A more complete estimate will be presented in the following
sections.) Transforming the integration contour in (53) from the real axis to the steepest-
descent path �p (see figure 1), and using the analytical properties of the integrands discussed
above, we obtain

I
p
+ (λ) = η(λs − λ)δ+(λ)δ−(λ)p(λ) e−2iφ(x,t,λ) + O

(
1√

t(λ − λs)

)
. (57)

Similarly,

I
p
−(λ) = −η(λ − λs)δ+(λ)δ−(λ)p(λ) e−2iφ(x,t,λ) + O

(
1√

t(λ − λs)

)
. (58)

For I q(λ), the computations follow the same steps with the steepest descent path �q (see
figure 1), and the result is

I
q
±(λ) = ±η(∓λs ± λ)δ−1

+ (λ)δ−1
− (λ)q(λ) e2iφ(x,t,λ) + O

(
1√

t(λ − λs)

)
. (59)

14
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The calculations above are valid when λ is not too close to the stationary point λs . In the
vicinity of the stationary point, the integrals Ip(λ) and I q(λ) can be estimated as

Ip(λ) ∼ ps

2π i

∫ +∞

−∞

(μ − λs)
iν
+ (μ − λs)

iν
− exp(−2iφ(μ))

μ − λ
dμ

and

I q(λ) ∼ qs

2π i

∫ +∞

−∞

(μ − λs)
−iν
+ (μ − λs)

−iν
− exp(2iφ(μ))

μ − λ
dμ,

with

ps = p(λs) exp(2iγ (λs)), qs = q(λs) exp(−2iγ (λs)).

This means that in the vicinity of λs , the t-dependence of Ip and Iq in the leading order is given
by the following relations:

Ip
s (λ) =

∫ +∞

−∞

|μ|2iν exp(−2itμ2)

μ − (λ − λs)
dμ = t−iν

∫ +∞

−∞

|μ|2iν exp(−2iμ2)

μ − √
t(λ − λs)

dμ, (60)

and

I q
s (λ) =

∫ +∞

−∞

|μ|−2iν exp(2itμ2)

μ − (λ − λs)
dμ = t+iν

∫ +∞

−∞

|μ|−2iν exp(2iμ2)

μ − √
t(λ − λs)

dμ. (61)

The boundary values of these Cauchy integrals are uniformly bounded (see [37]) in
√

t(λ−λs)

due to the fact that ν is real. This proves that the boundary values of Ip and Iq and therefore
�m

±(λ) are bounded in the large-t limit.

5.2. Approximate solution of the RHP

Now we are ready to show that the Manakov ansatz �m(λ) is an approximate solution of the
RHP (41). More precisely, if �(λ) is the exact solution of (41), then

�(λ) = [I + O(t−�)]�m(λ), � ∈
(

0,
1

2

)
, for t → +∞,− x

2t
< −

√
β, β > 0.

(62)

Indeed, not too close to λs , we have from equations (57), (58) and (59)[
�m

+ (λ)
]−1

= e−σ3 ln δ+(λ)

(
1 η(λs − λ)δ+(λ)δ−(λ)p(λ) e−2iφ(λ)

η(λ − λs)δ
−1
+ (λ)δ−1

− (λ)q(λ) e2iφ(λ) 1

)

+ O

(
1√

t(λ − λs)

)
,

and

�m
−(λ) =

(
1 η(λ − λs)δ+(λ)λ−(λ)p(λ) e−2iφ(λ)

η(λs − λ)δ−1
+ (λ)δ−1

− (λ)q(λ) e2iφ(λ) 1

)

× eσ3 ln δ−(λ) + O

(
1√

t(λ − λs)

)
,

so that

[
�m

+ (λ)
]−1

�m
−(λ) =

(
1 p(λ) e−2itλ2−2ixλ

q(λ) e2itλ2+2ixλ 1 + p(λ)q(λ)

)
+ O

(
1√

t(λ − λs)

)
.
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Since the boundary values of (60) and (61) are uniformly bounded, this means that[
�m

+ (λ)
]−1

�m
−(λ) = G�(λ) + r0(λ), (63)

where G�(λ) is given by (42) and

r0(λ) =
{
O(1/[

√
t(λ − λs)]), |λ − λs | > t−1/2+�,

O(1), |λ − λs | < t−1/2+�,
(64)

for t → ∞ and with � ∈ (
0, 1

2

)
. If one introduces the matrix

R(λ) ≡ �(λ)[�m(λ)]−1,

then

R+(λ) − R−(λ) = �+(λ)
[
�m

+ (λ)
]−1 − �−(λ)[�m

−(λ)]−1,

and using equation (63) and the relation �+(λ)G�(λ) = �−(λ) we obtain

R+(λ) − R−(λ) = r(λ) ≡ �+(λ)r0(λ)[�m
−(λ)]−1.

Taking into account that R(∞) = I we see that this relation implies that the matrix R(λ) can
be represented like this:

R(λ) = I +
1

2π i

∫ +∞

−∞

r(μ)

μ − λ
dμ, for λ ∈ C/R.

Under the hypothesis that �+(λ) is uniformly bounded in λ ∈ R (which can be proved as in
[33]), r(λ) satisfies the same estimates as r0(λ). Therefore, outside of a vicinity of λs ,

R(λ) = I + O(t−�), � ∈ (
0, 1

2

)
,

proving equation (62).

5.3. Asymptotic behavior of the potentials

Making use of the Manakov ansatz

�m(λ) =
(

δ(λ) −Ip(λ)δ−1(λ)

−I q(λ)δ(λ) δ−1(λ)

)
,

one can extract the auxiliary potentials from the large-λ expansion using the formulas obtained
in section 4.3. We start with b++ which enters directly the expression (19) for the field correlator.
Since �m(λ) is an approximate solution of the RHP, equation (49) can be written as

b++ = (
�m

1

)
12 + o(1) = 1

2π i

∫ +∞

−∞
δ+(μ)δ−(μ)p(μ) e−2iφ(x,t,μ) dμ + o(1), (65)

with p(λ) given by equation (43). The integral appearing in this expression can be estimated
via the steepest-descent method in the same way as we did for Ip(λ) in section 5.1.2. This
means that if one neglects the exponentially small corrections that come from the residues at
the zeros of eλ2−β − eiπκ , equation (65) gives

b++ = c0t
−1/2−iν e2itλ2

s + o(1),

where λs = −x/2t, ν is defined by equation (55), and c0 is a constant which depends on β

and κ . Until now, all the considerations were rigorous. The fact that the Manakov ansatz is
only an approximate solution of our RHP, as specified by equation (62), means then that the
next term in the asymptotic expansion could be of the order of O(t−1/2−�), and one should not
take into account the exponentially small terms which appear in the complete evaluation of
the integral (65). There is, however, a caveat. Condition (52) ensures that the transformation
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of the integration contour from the real axis to the steepest-descent path encloses the pole at
λ = λ−

0 which is closest to the real axis (see figure 1) and is given by

λ−
0 = −(

β +
√

β2 + π2κ2
)1/2/√

2 − i
(−β +

√
β2 + π2κ2

)1/2/√
2.

The residue at λ = λ−
0 gives the most slowly decaying exponential term to the integral (65),

i.e. a more complete solution for (65) including the contribution from λ = λ−
0 is

b++ = c0t
−1/2−iν e2itλ2

s + c1 e−2iφ(x,y,λ−
0 ) + o(1),

= c0t
−1/2−iνe2itλ2

s + c1 e2t (πκ−iβ) e−2ixλ−
0 + o(1).

(66)

As one approaches the bosonic limit κ = 0, the second term in (66) which arises from the
pole at λ = λ−

0 becomes dominant even when compared with a possible O(t−�) term, since
�λ−

0 → 0 in this limit. This term is the main component of b++ in the case of impenetrable
bosons. This shows that the exact solution for b++ should be written as

b++ = c0t
−1/2−iν e2itλ2

s + · · · + c1 e2t (πκ−iβ) e−2ixλ−
0 + · · · , (67)

where the dots between c0 and c1 mean that there might be terms of order O(t−1/2−�) which
are, however, smaller than the c1 term when κ → 0.

Although we will not use it below, we present the result for the potential B−− which is

B−− = −(
�m

1

)
21 + o(1) = − 1

2π i

∫ +∞

−∞
δ−1

+ (μ)δ−1
− (μ)p(μ) e2iφ(x,t,μ) dμ + o(1).

This means that

B−− = c0t
−1/2+iν e−2itλ2

s + o(1). (68)

By contrast, the results for potentials B+− and C+− + C−+ + B−−G will be very important for
the subsequent calculations. They are

B+− = −α0 − (
�m

1

)
11 + o(1) = −α0 − δ0 + o(1)

and

C+− + C−+ + B−−G = (
�m

2

)
22 − (

�m
2

)
11 + o(1) = −2δ1 + o(1),

where α0 is defined by equation (48) and

δ0 = i

π

∫ λs

−∞
dμ ln|ϕ(μ2, β, κ)|, δ1 = i

π

∫ λs

−∞
dμμ ln|ϕ(μ2, β, κ)|.

Introducing the function I (β, κ):

I (β, κ) = �
(∫ +∞

−∞
dμ ln ϕ(μ2, β, κ)

)
,

we can rewrite the result for B+− as

B+− = −I (β, κ)

2π
+

i

2π

∫ +∞

−∞
sign(μ − λs) ln|ϕ(μ2, β, κ)| dμ + o(1). (69)

Also, using the fact that ϕ(μ2, β, κ) is an even function of μ, one can transform the result for
C+− + C−+ + B−−G into

C+− + C−+ + B−−G = i

π

∫ +∞

−∞
sign(μ − λs)μ ln|ϕ(μ2, β, κ)| dμ + o(1). (70)
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5.4. Asymptotic behavior of σ(x, t, β, κ)

Formulas (69) and (70) allow us to obtain the asymptotic expression for σ . As a first step,
combining them with the differential equations (26) we have

∂xσ = i

π
I(β, κ) +

1

π

∫ +∞

−∞
sign(μ − λs) ln|ϕ(μ2, β, κ)| dμ + o(1) (71)

and

∂tσ = 2

π

∫ +∞

−∞
sign(μ − λs)μ ln|ϕ(μ2, β, κ)| dμ + o(1). (72)

The asymptotic expression for σ is obtained integrating equations (71) and (72) over x and t.
This implies, however, that more accurate expressions for the derivatives of σ that include the
higher-order asymptotic terms are needed to have the same accuracy for σ as for b++ (67). To
obtain these expressions, we first note that equation (69) implies that

∂xB+− = i

2π
ln

∣∣ϕ(
λ2

s , β, κ
)∣∣1

t
= O

(
1

t

)
. (73)

Combined with the first part of equation (24), ∂xB+− = 2ib++B−−, this result agrees with the
estimates b++ = O(1/t1/2) and B−− = O(1/t1/2) that were already obtained in the previous
section, see equations (66) and (68). Also, we know that the potentials B−− and b++ solve the
separated nonlinear Schrödinger equation (23) for which the general structure of the decreasing
solutions is (see, e.g., [33, 38])

b++ = t−1/2

(
u0 +

∞∑
n=1

2n∑
k=0

(ln 4t)k

tn
unk

)
e2itλ2

s −iν ln 4t , (74)

B−− = t−1/2

(
v0 +

∞∑
n=1

2n∑
k=0

(ln 4t)k

tn
vnk

)
e−2itλ2

s +iν ln 4t , (75)

where u0, v0, unk, vnk and ν are functions of λs = −x/2t. The parameters ν, unk, vnk can be
expressed in terms of u0, v0. In particular,

v12u0 + u12v0 = 0, ν = −4u0v0,

v11u0 + u11v0 = (ν2)′′

32
, (76)

v10u0 + u10v0 = (νν ′)′

16
+

i

8
(v′

0u0 − v0u
′
0)

′,

where the prime denotes the derivative with respect to λs . Now we can improve the
asymptotic expansions for the derivatives ∂xσ and ∂tσ . Substitution of (74) and (75) into
∂xB+− = 2ib++B−− gives

∂xB+− = − iν

2t
+ i

(ν2)′′

16

ln 4t

t2
+ i

[
(ν2)′′

16
+

i

4

(
v′′

0u0 − v0u
′′
0

)] 1

t2
+ O

(
ln4 4t

t3

)
. (77)

Comparing the first term in this expansion with equation (73), we see that ν =
− 1

π
ln

∣∣ϕ(
λ2

s , β, κ
)∣∣ > 0 in equations (74) and (75), in agreement with our previous notation

(55). Integrating equation (77) over x and using the first equation in (26), we obtain

∂xσ = i

π
I (β, κ) +

1

π

∫ +∞

−∞
sign(μ − λs) ln|ϕ(μ2, β, κ)| dμ

− (ν2)′

4

ln 4t

t
−

[
(ν2)′

4
+ i(v′

0u0 − v0u
′
0)

]
1

t
+ O

(
ln4 4t

t2

)
. (78)
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Equation (25) can be rewritten as

∂x(C+− + C−+ + B−−G) = b++∂xB−− − B−−∂xb++.

Then the asymptotic expansions (74) and (75) give

∂x(C+− + C−+ + B−−G) = i
xν

2t2
+

ix∂x((ν
2)′)

8t2
− x∂x(v

′
0u0 − u′

0v0)

2t2
− (u0v

′
0 − v0u

′
0)

2t2

+ i
x∂x((ν

2)′)
8

ln 4t

t2
− i

ν(∂xν)

2

ln 4t

t
+ O

(
ln4 4t

t3

)
. (79)

Integrating this equation over x, and using the second equation in (26) we find

∂tσ = 2

π

∫ +∞

−∞
sign(μ − λs)μ ln|ϕ(μ2, β, κ)| dμ − λs

(μ2)′

2

ln 4t

t
+

ν2

2t

− λs

(ν2)′

2t
− λs

2i

t
(v′

0u0 − v0u
′
0) + O

(
ln4 4t

t2

)
. (80)

Finally, integration of equation (79) over x and (80) over t gives the asymptotic expansion for
σ(x, t, β, κ) of the required accuracy:

σ(x, t, β, κ) = x
i

π
I (β, κ) +

1

π

∫ +∞

−∞
|x + 2t |ln|ϕ(μ2, β, κ)| dμ +

ν2

2
+

ν2

2
ln 4t

+ 2i
∫ λs

−∞
(v′

0(μ)u0(μ) − v0(μ)u′
0(μ) dμ + c(β) + O

(
ln4 4t

t

)
, (81)

where c(β) is a constant that depends only on β.

6. Asymptotic solution of the RHP: time-like case

The computations in the time-like region defined by

λs > −
√

β, β = h/T > 0

are very similar to those presented above for the space-like case. Because of this, the
presentation in this section is more sketchy, emphasizing the differences between the two
regions. As we will see in what follows, the leading term of the asymptotics for the potential
b++ is the same in the time-like as in the space-like region. The sub-leading term in the
asymptotic expansion, which is important because it reproduces the predictions of conformal
field theory, is, however, different in the time-like case.

6.1. Manakov ansatz

The Manakov ansatz in the time-like region is

�m(λ) =
(

1 −Ip(λ)

−I q(λ) 1

)
e−σ3 ln δ(λ), (82)

where Ip(λ) and I q(λ) are now given by

Ip(λ) = 1

2π i

∫ +∞

−∞

δ−1
+ (μ)δ−1

− (μ)

μ − λ
p(μ) e−2iφ(x,t,μ) dμ, (83)

and

I q(λ) = 1

2π i

∫ +∞

−∞

δ+(μ)δ−(μ)

μ − λ
q(μ) e2iφ(x,t,μ) dμ. (84)
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The functions p(λ) and q(λ) here are defined in equations (46) and (47), respectively, while
the function δ(λ) is the solution of the following scalar RHP:

δ+(λ) = δ−(λ)[1 + p(λ)q(λ)η(λ − λs)], λ ∈ R, δ(∞) = 1.

Using the fact that for p(λ) and q(λ) defined by (46) and (47), 1+p(λ)q(λ) = |ϕ(λ2, β,−κ)|2,
one can see that the solution of this RHP can be written as

δ(λ) = exp

{
1

2π i

∫ ∞

λs

dμ

μ − λ
ln|ϕ(μ2, β,−κ)|2

}
.

6.1.1. Properties of δ(λ). Following the same steps as in the space-like region, we have

δ±(λ) = (λ − λs)
−iν
± exp(iγ (λ))

∣∣ϕ(
λ2

s , β,−κ
)∣∣±(|ϕ(λ2, β,−κ)|)±η(λ−λs), (85)

with

ν(λs, β, κ) = − 1

π
ln

∣∣ϕ(
λ2

s , β, κ
)∣∣ = − 1

π
ln

∣∣ϕ(
λ2

s , β,−κ
)∣∣ > 0,

and

γ (λ) = 1

π

∫ ∞

λs

ln |μ − λ|d(ln |ϕ(μ2, β,−κ)|) dμ.

This also means that

δ+(λ)δ−(λ) = (λ − λs)
−iν
+ (λ − λs)

−iν
− (exp 2iγ (λ)), (86)

showing integrability of the singularity at λs .

6.1.2. Estimation of Ip(λ) and I q(λ). The estimates of Ip(λ) and I q(λ) in the time-like
region are obtained as in the space-like region by the steepest-decent method. The steepest-
descent contours are shown in figure 2.

Similar to the space-like case, for λ not too close to the stationary point λs , transformation
of the integration contour from the real axis to the steepest-descent paths gives

I
p
±(λ) = ±η(±λs ∓ λ)δ−1

+ (λ)δ−1
− (λ)p(λ) e−2iφ(x,t,λ) + O

(
1√

t(λ − λs)

)
(87)

and

I
q
±(λ) = ±η(∓λs ± λ)δ+(λ)δ−(λ)q(λ) e2iφ(x,t,λ) + O

(
1√

t(λ − λs)

)
. (88)

Also similar to the space-like case, one can show that for λ in the vicinity of the stationary
point, the boundary values of Ip and Iq, and therefore �m

±(λ), are bounded in the large-t limit.

6.2. Approximate solution of the RHP

Combining equations (87), (88) and (82), one obtains[
�m

+ (λ)
]−1

= eσ3 ln δ+(λ)

(
1 η(λs − λ)δ+(λ)−1δ−1

− (λ)p(λ) e−2iφ(λ)

η(λ − λs)δ+(λ)δ(λ)q(λ) e2iφ(λ) 1

)

+ O

(
1√

t(λ − λs)

)
,
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Figure 2. Stationary-phase contours for the integrals (83) and (84) in the large-t limit in the

time-like case. The dots are the zeros of the function eλ2−β − e−iπκ with λ+
0 denoting the zero

which gives the exponentially decreasing correction with the slowest rate of decay for b++ in the
time-like case.

and

�m
−(λ) =

(
1 η(λ − λs)δ+(λ)−1λ−1

− (λ)p(λ) e−2iφ(λ)

η(λs − λ)δ+(λ)δ−(λ)q(λ) e2iφ(λ) 1

)

× e−σ3 ln δ−(λ) + O

(
1√

t(λ − λs)

)
,

and therefore,

[
�m

+ (λ)
]−1

�m
−(λ) =

(
1 + p(λ)q(λ) p(λ) e−2itλ2−2ixλ

q(λ) e2itλ2+2ixλ 1

)
+ O

(
1√

t(λ − λs)

)
.

This shows that the Manakov ansatz (82) is an approximate solution for the RHP (41) with the
conjugation matrix (45). More precisely, if �(λ) is the exact solution, then

�(λ) = [I + O(t−�)]�m(λ), � ∈
(

0,
1

2

)
,

for t → +∞, − x

2t
> −

√
β, β > 0.

6.3. Asymptotic behavior of the potentials

As above, the asymptotic expressions for the potentials are extracted from the large-λ
expansion of equation (82) making use of the formulas obtained in section 4.3. Substituting
equations (82) and (83) into the second equation in (49), we have

b++ = (
�m

1

)
12 + o(1) = 1

2π i

∫ +∞

−∞
δ+(μ)−1δ−(μ)−1p(μ) e−2iφ(x,t,μ) dμ + o(1),

where p(λ) is given by equation (46). The main difference with the space-like region is that
now the residues that give the exponential corrections to the leading term of the asymptotics
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are the zeros of the function eλ2−β − e−iπκ and not eλ2−β − eiπκ . The pole that is closest to
the real axis among those that are enclosed by the transformation of the integration contour
from the real axis to �p (see figure 2), and therefore contributes the most slowly decaying
exponential term, is

λ+
0 = −(

β +
√

β2 + π2κ2
)1/2/√

2 + i
(−β +

√
β2 + π2κ2

)1/2/√
2.

The contributions of the stationary point and the residue at λ+
0 produce then the following

expression for b++:

b++ = c0t
−1/2−iν e2itλ2

s + c1 e−2iφ(x,y,λ−
0 ) + o(1),

= c0t
−1/2−iνe2itλ2

s + c1 e2t (−πκ−iβ) e−2ixλ−
0 + o(1), (89)

where c0 and c1 are some undetermined amplitudes which can depend on β, κ and λs . Again,
as we approach the bosonic limit, κ → 0, the second term in (89) becomes dominant. This
term represents the leading asymtoptic term of b++ for impenetrable bosons.

The leading term of the potential B−− is given by the same equation (68) as in the
space-like case. The potentials B+− and C+− + C−+ + B−−G are obtained from equation (50):

B+− = +α0 − (
�m

1

)
11 + o(1) = +α0 − δ0 + o(1)

and

C+− + C−+ + B−−G = (
�m

2

)
22 − (

�m
2

)
11 + o(1) = −2δ1 + o(1),

where α0 is now defined by equation (51) and

δ0 = 1

π i

∫ ∞

λs

dμ ln|ϕ(μ2, β,−κ)|, δ1 = 1

π i

∫ ∞

λs

dμμ ln|ϕ(μ2, β,−κ)|. (90)

The result for B+− can be rewritten as

B+− = I (β,−κ)

2π
+

i

2π

∫ +∞

−∞
sign(μ − λs) ln|ϕ(μ2, β,−κ)| dμ + o(1) (91)

in terms of the function

I (β,−κ) = �
(∫ +∞

−∞
dμ ln ϕ(μ2, β,−κ)

)
= −�

(∫ +∞

−∞
dμ ln ϕ(μ2, β, κ)

)
.

Also, using the fact that ϕ(μ2, β,−κ) is an even function of μ, the equation for
C+− + C−+ + B−−G can be transformed into

C+− + C−+ + B−−G = i

π

∫ +∞

−∞
sign(μ − λs)μ ln|ϕ(μ2, β,−κ)| dμ + o(1). (92)

6.4. Asymptotic behavior of σ(x, t, β, κ)

Taking into account that I (β,−κ) = −I (β, κ) and |ϕ(μ2, β,−κ)| = |ϕ(μ2, β, κ)|, one sees
directly that the asymptotic expressions (91) for B+− and (92) for C+− + C−+ + B−−G in
the time-like case coincide with the corresponding expressions (69) and (70) in the space-
like region. Since the higher-order corrections discussed in section 5.4 are the same in both
regions, this means that the asymptotic expansion for σ in the time-like case is given by the
same equation (81) as before.
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7. Results

Now we have all the ingredients to formulate the results for the main object of our interest, the
anyonic field correlator which, as a reminder, is given in rescaled variables by the expression

〈�(x2, t2)�
†(x1, t1)〉T =

√
T g(x, t, β, κ) (93)

with

g(x, t, β, κ) = − 1

2π
e2itβb++(x, t, β, κ) eσ(x,t,β,κ). (94)

7.1. Negative chemical potential

While all the considerations in the previous sections were based on the assumption that the
chemical potential is positive, in fact, the results obtained are also valid when β < 0. In this
case, we need only the leading term for b++. Putting together the first term in equation (67) or
(89) and equation (81), we can express the leading asymptotic behavior of the anyonic field
correlator at negative chemical potential as

g(x, t, β, κ) = c0t
(ν−i)2/2 e2it (λ2

s +β) eixI (β,κ)/π eC(x,t,β,κ)[1 + o(t−1/2)], (95)

where c0 is some constant amplitude, λs = −x/2t, ν = −(1/π) ln
∣∣ϕ(

λ2
s , β, κ

)∣∣, and the
definitions of all other functions in this equation are presented together in equations (2) and
(3) in the introduction.

7.2. Positive chemical potential

For reasons discussed in section 5.3, in the case of positive chemical potential, one needs to
keep in the asymptotic expansion of the potential b++ and, therefore, of the field correlator,
not only the leading term, which is the same in the space-like and time-like regions, but the
next exponentially decreasing term as well, which is different in the two regions. Thus, the
two results should be presented separately.

7.2.1. Space-like region: x/2t >
√

β. Combining equations (81) and (67), we have

g(x, t, β, κ) = tν
2/2 eixI (β,κ)/π eC(x,t,β,κ)

[
c0t

−1/2−iν e2it (λ2
s +β) + c1 e2tπκ e−2ixλ−

0 + o(t−1/2)
]
.

(96)

7.2.2. Time-like region: x/2t <
√

β. In this case, equations (81) and (89) give

g(x, t, β, κ) = tν
2/2eixI (β,κ)/π eC(x,t,β,κ)

[
c0t

−1/2−iν e2it (λ2
s +β) + c1 e−2tπκ e−2ixλ+

0 + o(t−1/2)
]
.

(97)

The constants λ−
0 and λ+

0 in these equations are defined by equation (5) in the introduction.

8. Bosonic and free-fermionic limit

As the last step, we analyze our main result for the anyonic field correlator in various limits,
in order to establish the relation with previously known expressions, and to demonstrate the
unexpected features of the anyonic case.
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8.1. Bosonic limit

For bosons, κ → 0, one has

ϕ(λ2, β, κ = 0) = eλ2−β − 1

eλ2−β + 1
,

C(x, t, β, κ = 0) = 1

π

∫ +∞

−∞
|x − 2tλ|ln|ϕ(λ2, β, κ = 0)| dλ

(98)

and ν = −(1/π) ln
∣∣ϕ(

λ2
s , β, κ = 0

)∣∣. Also, I (β, κ = 0) = −2π
√

β for β > 0 and
I (β, κ = 0) = 0 for β < 0. In the case of negative chemical potential, using these relations
it is straightforward to see that equation (95) reduces to the known result for impenetrable
bosons [5, 33]. For positive chemical potential, the result obtained in [5, 33] is

g(x, t, β, κ = 0) = c0t
ν2/2 eC(x,t,β,κ=0)[1 + O(t−1/2)], (99)

and is valid in both the space-like and the time-like region. Taking into account that in both
regions, λ±

0 = −√
β for κ = 0, we can see that in equations (96) and (97), the second term

in the parenthesis gives the leading contribution in this limit, which reproduces the bosonic
result. This means that for a certain value of κ approaching 0, there is a crossover in which the
relative magnitude of the two terms in the parenthesis changes, and the second term becomes
the leading one for κ close to 0.

8.2. Free-fermionic limit

For κ → 1, the anyonic system we considered reduces to free fermions. In this case, the
function ϕ(λ2, β, κ) vanishes, which means that ν = 0 and C(x, t, β, κ = 1) = 0. It is easy
to see that equations (96) and (97) reduce to the corresponding correlators (A.1) and (A.2) of
free fermions that are presented in appendix A.

9. Conformal field theory

The behavior of the field–field correlators of the one-dimensional particle systems at low
temperatures is usually believed to follow the predictions of conformal field theory (CFT).
For impenetrable anyons, the CFT result for the leading term of the large time and distance
asymptotic of the field–field correlator is [7]

〈�(x, t)�†(0, 0)〉 ∼ e−ikF κx exp

{
−

(
2πT �+

vF

|x − vF t | +
2πT �−

vF

|x + vF t |
)}

,

where kF = √
h and vF = 2kF are the Fermi vector and the Fermi velocity, respectively, and

�± are the conformal dimensions:

2�± =
(

1

2Z
∓ Z

κ

2

)2

, Z = 1.

(Note the differences in conventions between [7] and this work together with the rest of
the papers [1, 2], where we have obtained the determinant representation for the anyonic
field–field correlator. The main difference is related to the ordering of the anyonic creation
operators in the eigenstates of the Hamiltonian, which amounts with the change of the sign
of the statistics parameter κ in the formulas of [7].) In the notations of this work, the field
correlator considered here is

〈�(x2, t2)�
†(x1, t1)〉T , t21 = t2 − t1 > 0, x12 = x1 − x2 > 0,
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which means that the CFT predictions are

〈�(x2, t2)�
†(x1, t1)〉T ∼ eikF κx12 eπT κt21 e− πT

vF
x12(

1
2 + κ2

2 ) (100)

in the space-like region, and

〈�(x2, t2)�
†(x1, t1)〉T ∼ eikF κx12 e

πT κ
vF

x12 e−πT t21(
1
2 + κ2

2 ) (101)

in the time-like region. The leading term of the asymptotics (96) and (97) obtained from the
exact calculation in this work do not reproduce these equations in the limit of low temperatures
β → ∞. We can show, however, that the sub-leading terms in these asymptotics do give the
conformal behavior. Indeed, as shown in appendix B, in the limit β → ∞, we have

x
i

π
I (β, κ) + C(x, t, β, κ) = x2i

√
β(κ − 1) − x

π

2
√

β
(1 − κ)2, (102)

in the space-like case, and

x
i

π
I (β, κ) + C(x, t, β, κ) = x2i

√
β(κ − 1) − tπ(1 − κ)2, (103)

in the time-like case. In the same limit, λ−
0 and λ+

0 given by (5) become

λ±
0 = −

√
β ± i

πκ

2
√

β
. (104)

Using these formulas, we see directly that the second term in the asymptotic expansion of the
field correlator is given by

tν
2/2 e2ixκ

√
β e2tπκ e−x π

2
√

β
(κ2+1)

, (105)

in the space-like region, and

tν
2/2 e2ixκ

√
β ex πκ√

β e−tπ(κ2+1), (106)

in the time-like region. The exponential terms are exactly the ones predicted by CFT, if we
take into account that x = x12

√
T , t = t21T/2 and β = h/T .

Qualitatively, the non-conformal term of the time-dependent field–field correlator, which
is the leading asymptotic term for particle statistics not too close to bosons, can be traced
back [40] to the singularity of the one-dimensional density of states at the bottom of the
single-particle energy spectrum λ → 0. In agreement with this interpretation, there are no
non-conformal terms in the ‘static’ equal-time correlator (see, e.g., [29]), since the single-
particle spectrum is unlimited in the momentum space, λ ∈ (−∞, +∞). By contrast,
the energy spectrum ε ∝ λ2 has a threshold at λ = 0 with the associated non-analytical
behavior of the density of states. This non-analyticity manifests itself directly through the
non-conformal terms in the asymptotic behavior of the field correlator of the massive one-
dimensional particles.

10. Summary

In conclusion, we have calculated the large time and distance asymptotic behavior of the
temperature-dependent field–field correlation functions of impenetrable one-dimensional
spinless anyons. As a function of the statistics parameter, the anyonic correlator interpolates
continuously between the two limits of impenetrable bosons and free fermions. The main
qualitative feature of our result is that, asymptotically, the anyonic correlator consists of two
additive parts. One is a non-conformal term produced by the non-analyticity of the density
of states at the bottom of the single-particle energy spectrum. For all values of the particle
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statistics away from the bosonic limit, this term gives the leading asymptotic contribution to
the correlator. The other is the sub-leading term which agrees with the conformal field theory
and is associated physically with the low-energy excitations close to the effective Fermi energy
of the system of impenetrable anyons. In agreement with the previous results [5, 39], for the
statistics parameter close to the bosonic limit, the conformal term determines the leading
behavior of the asymptotics. Because of the additivity of the two parts of the correlator and
their different physical origin, even away from the boson limit, the system’s response to the
low-energy probes is determined by the (sub-leading) conformal part of the correlator.

Appendix A. Large time and distance asymptotic behavior of the field correlator for
free fermions

In rescaled variables used in this work, t = (t2 − t1)T /2 > 0, x = (x1 − x2)
√

T /2 > 0, β =
h/T , the field–field correlation function of free one-dimensional fermions is expressed as [41]

〈�(x2, t2)�
†(x1, t1)〉T =

√
T

e2itβ

2π

∫ +∞

−∞
dλ

eλ2−β

eλ2−β + 1
e−2iφ(x,t,λ).

We are interested in the asymptotic behavior of the correlator in the limit of large x > 0, t > 0
with x/t = const. The analysis is similar to the one performed for the functions Ip(λ) in
section 5.1.2. The leading term is obtained via the steepest descent method and the corrections
come from the poles located in the complex plane at the zeroes of the function eλ2−β + 1. The
corrections to the leading term are different in the space-like and time-like regions.

A.1. Space-like region: (x/2t >
√

β)

In this case, the residue that gives the exponential term with the slowest rate of decay for large
x and t is

λs
0 = −(

β +
√

β2 + π2
)1/2/√

2 − i
(−β +

√
β2 + π2

)1/2/√
2,

resulting in the following asymptotic behavior of the correlator:

〈�(x2, t2)�
†(x1, t1)〉T ∼ c0t

−1/2 e2it (β+λ2
s ) + c1 e2tπ e−2ixλs

0 + · · · . (A.1)

Here λs = −x/2t is the stationary point of the phase φ(x, t, λ) and c0, c1 are some
constant amplitudes. In the limit of low temperatures, β → ∞, using the fact that
λs

0 → −√
β − iπ/(2

√
β), we obtain

〈�(x2, t2)�
†(x1, t1)〉T ∼ c0t

−1/2 e2it (β+λ2
s ) + c1 e2ix

√
βe2π(t−x/2

√
β) + · · · .

A.2. Time-like region: (x/2t <
√

β)

In this case, the residue producing the leading contribution is

λt
0 = −(

β +
√

β2 + π2
)1/2/√

2 + i
(−β +

√
β2 + π2

)1/2/√
2

with the corresponding asymptotic behavior of the correlator:

〈�(x2, t2)�
†(x1, t1)〉T ∼ c0t

−1/2 e2it (β+λ2
s ) + c1 e−2tπ e−2ixλt

0 + · · · . (A.2)

In the low-temperature limit, this becomes

〈�(x2, t2)�
†(x1, t1)〉T ∼ c0t

−1/2 e2it (β+λ2
s ) + c1 e2ix

√
βe2π(−t+x/2

√
β) + · · · .
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Appendix B. Analysis of C(x, t, β, κ)

The function C(x, t, β, κ) is defined in the main text as

C(x, t, β, κ) = 1

π

∫ +∞

−∞
|x − 2tλ|ln|ϕ(λ2, β, κ)| dλ, (B.1)

where

ϕ(λ2, β, κ) = eλ2−β − eiπκ

eλ2−β + 1
. (B.2)

Using the expansion of the logarithm: ln(1 − z) = −∑∞
n=1 zn/n, |z| < 1, we obtain the

following expansions for ln |ϕ(λ2, β, κ)|:

ln|ϕ(λ2, β, κ)| = −
∞∑

n=1

en(λ2−β)

n
(cos(nπκ) + (−1)n+1), λ ∈ (−

√
β,

√
β) (B.3)

and

ln|ϕ(λ2, β, κ)| = −
∞∑

n=1

en(β−λ2)

n
(cos(nπκ) + (−1)n+1), λ ∈ (−∞,−

√
β) ∪ (

√
β,∞).

(B.4)

We are interested in the the asymptotic behavior of C(x, t, β, κ) in the limit of low temperatures
(β → ∞). This behavior is different in the space-like and time-like region.

B.1. Space-like region: (x/2t >
√

β)

It is convenient to express the function C(x, t, β, κ) in this case as

C(x, t, β, κ) = 1

π

∫ x/2t

−∞
(x − 2tλ) ln|ϕ(λ2, β, κ)| dλ +

1

π

∫ ∞

x/2t

(2tλ − x) ln|ϕ(λ2, β, κ)| dλ.

(B.5)

Using the expansion (B.4) one can see that the second integral in this equation is on the
order of O(e−((x/2t)2−β)), which for x/2t outside of the immediate vicinity of

√
β, more

precisely: x/2t − √
β > O(1/

√
β), decreases exponentially in

√
β, since (x/2t)2 − β >

2
√

β(x/2t − √
β). The same argument allows us to extend the upper limit of integration in

the first integral on the RHS of equation (B.5) back to +∞. Then, the expansions (B.3) and
(B.4) combined with the formulas

e−βn

∫ √
β

0
eλ2ndλ = 1

2n
√

β
+ O

(
1

β3/2

)
, eβn

∫ ∞
√

β

e−λ2ndλ = 1

2n
√

β
+ O

(
1

β3/2

)

give the following estimate for this integral:

1

π

∫ +∞

−∞
(x − 2tλ) ln|ϕ(λ2, β, κ)| dλ = −x

2

π
√

β

∞∑
n=1

cos(nπκ) + (−1)n+1

n2
+ O

(
1

β3/2

)
.

(B.6)

Using formulas (0.234) and (1.443) of [42]:
∑∞

k=1(−1)n+1/n2 = π2/12 and∑∞
k=1 cos nπκ/n2 = π2B2(κ/2), where B2(x) = x2 − x + 1/6 is the second Bernoulli
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polynomial, and the fact that contribution of the region λ > x/2t to the integral can be
neglected, we rewrite the previous result as

1

π

∫ +∞

−∞
|x − 2tλ|ln|ϕ(λ2, β, κ)| dλ = −x

π

2
√

β
(1 − κ)2 + O

(
1

β3/2

)
, (β → ∞).

(B.7)

Therefore, in the space-like region, we have

C(x, t, β, κ) = −x
π

2
√

β
(1 − κ)2 + O

(
1

β3/2

)
, (β → ∞). (B.8)

B.2. Time-like region: (x/2t <
√

β)

In this case, we begin by expressing C(x, t, β, κ) as

C(x, t, β, κ) = t
4

π

∫ ∞

0
λ ln|ϕ(λ2, β, κ)| dλ − 2

π

∫ x
2t

0
(2λt − x) ln|ϕ(λ2, β, κ)| dλ. (B.9)

Using again, expansion (B.3), one can see that the second integral in this equation is of the
order of O(e−(β−(x/2t)2)), which for x/2t not too close to

√
β, more precisely:

√
β − x/2t >

O(1/
√

β), decreases exponentially in
√

β, since β − (x/2t)2 > 2
√

β(
√

β − x/2t). Then,
expansions (B.3) and (B.4) and the calculations similar to those in the space-like region give
for the first integral

t
4

π

∫ ∞

0
λ ln|ϕ(λ2, β, κ)| dλ = −πt(1 − κ)2. (B.10)

The final result is

C(x, t, β, κ) = −πt(1 − κ)2 + O(e−(β−(x/2t)2)). (B.11)
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